Research Project Genetics and species history of polar bears

Matthew A. Cronin Research Associate Professor of Animal Genetics University of Alaska Fairbanks

Polar bears: genetic issues

- Has the species been exposed to previous periods of reduced sea ice?
- Is there potential for inter-species hybridization with brown bears?
- Are there geographic population units?
- Fitness and genetic variation

Scientific collaborations

- USDA Agricultural Research Service Fort Keogh Livestock and Range Research Lab-Cattle genetics (Michael D. MacNeil)
- University of California Davis Department of Animal Science-Cattle genomics (Juan F. Medrano)
- Texas Tech University Department of Biology-Interspecies genetic relationships (Robert J. Baker)
- Pacific Identifications Inc.-Assessment of Paleoclimate and paleo sea ice environments (Susan J. Crockford)
- Other colleagues in genetics, systematics, taxonomy

Research Objectives

- Quantify the genetic relationships of polar bears and brown bears
- Estimate the time of divergence of the species
- Assess sea ice conditions in the Arctic in the past
- Assess polar bears past sea ice habitats

Methods

- Genomics
- DNA sequencing
- Genetic distances with AFLP and microsatellite DNA
- Review of paleo-climate and paleoenvironment of the northeast Pacific ocean and Arctic

Results Microsatellite DNA

Reassess previously published data

Results

Amplified Fragment Length Polymorphism (AFLP)

Results Genomic sequencing

Research related to Alaskan Polar Bears, collaboration with U.C. Davis

University of Alaska Fairbanks Matthew A. Cronin University of California, Davis Juan F. Medrano Gonzalo Rincon Alma Islas

Objectives and Deliverables at UCDavis:

- 1. Develop a draft assembly of the bear genome.
- 2. Develop a draft assembly of the mitochondrial genome.
- 3. Generate a large number of SNP in the bear genome that can be used to characterize and quantify genetic relationships among bears.
- 4. Develop a genotyping platform to characterize and quantify genetic relationships among bears. (SNP in candidate genes and target regions in the genome obtained from the bear genomic sequencing analysis will be used to develop a genotyping platform).

Sequencing Results

Polar	Bear	Brown Bear	Black Bear

Total DNA410 million reads490 million reads80 million reads

Genomic assembly summary: 1 billion reads were used to perform the genome assembly

Two strategies:

De-novo assembly: all sequences were assembled de-novo to develop a draft bear genome assembly. 90,000 contigs were obtained including nuclear and mitochondrial DNA.
Reference assembly: all sequences were mapped to two annotated reference genome. Using the Panda genome as a reference: 80% of the genomic reads were mapped. Using the Dog genome as a reference: 50% of the genomic reads were mapped.

SNP discovery provided more than **2.5** million SNP polymorphisms in the bear genome that are currently being analyzed and filtered.

Results Paleo-climate and Paleo-environments

Polar bear evolution: genetics and climate change in the Late Pleistocene

Susan J. Crockford, Ph.D. *Pacific Identifications Inc.* Victoria, BC Canada

Ice age stages	MIS	Sea level and Sea Ice Levels	Age (ka)	Climate
Present Interglacial (V. Early Holocene)	2-1	Ice ↓↓↓ Sea↑↑↑ rapidly BERING STRAIT WATER	19-11.5	Very Warm, Like MIS 5e but short
Last Glacial Maximum, LGM	2	lce ↑↑ Sea ↓↓ *BERING LAND BRIDGE*	ca. 30-19 (max at ca. 21)	Very Cold, short
	3	lce ↓ Sea↑ BERING STRAIT WATER	ca. 50-30 (max. at 45-42)	Warm, long, AMHs expand across Eurasia
	5b	lce ↑↑ Sea ↓↓ *BERING LAND BRIDGE*	ca. 90-80	Very Cold, short Like LGM? (MIS 2)
Sangamonian	5e	lce ↓↓↓ Sea ↑↑↑ BERING STRAIT WATER	130-115 (max. at 120-125)	Very Warm, long Like (MIS 2-1) but much longer
Illinoian	6	lce ↑↑↑ Sea ↓↓↓ *BERING LAND BRIDGE*	ca. 160-140 (max. at 150)	Very, very Cold, and long, colder than LGM (MIS 2)
	6	Ice ↓ Sea† ?BERING STRAIT WATER OR LAND BRIDGE REDUCED?	180-160	Warmer, long Like MIS 3?
	6	lce ↑↑ Sea ↓↓ *BERING LAND BRIDGE*	190-180	Very Cold, short Like LGM? (MIS 2)

Pink is warm, Blue is cold: pale tones milder, dark tones more extreme

Holocene Climate Changes

NA, N. Pacific	lce + Sea levels	Climate	Calendar yrs
Modern Era ("today")	lce	Warm (generally)	AD 1880-2010
Little Ice Age (LIA)	lce↑ Sea ↓?	Colder than today	AD 1550-1880
Medieval Warm Period	lce ↓↓ Sea ↑?	Warmer than today	AD 800-1500
Dark Ages Cold Period	lce↑ Sea?	Colder than today	AD 450-800
Roman Warm Period	lce↓ Sea?	Warm, like today	50 BC-AD 450
Mid-Holocene Neoglacial	lce ↑↑ Sea ↓	Colder than LIA	3550-50 BC
Mid-Holocene Warm Period	lce↓ Sea?	Warm, like today	6050-3550 BC
Younger-Younger Dryas	lce	Colder than today	6550-6050 BC
Holocene Thermal Optimum	lce ↓↓↓ Sea ↑↑↑	Much warmer than today	9550-6550 BC
Younger Dryas (end LGM)	lce ↑↑ Sea ↓↓	Much colder than today	11050-9550 BC
Bolling Allerod (end LGM)	lce ↓↓ Sea ↑↑	Much warmer than today	17050-11050 BC

Polar bear sea ice habitat during the last Interglacial, 130-115 kya

UAF

- Kramm GHG
- Zhang more winter ice with less summer ice

Federal Court deference to Federal Agency

• Page 4 of 116: "Although plaintiffs have proposed many alternative conclusions that the agency could have drawn with respect to the status of the polar bear, the Court cannot substitute either the plaintiffs' or its own judgment for that of the agency. Instead, this Court is bound to uphold the agency's determination that the polar bear is a threatened species as long as it is reasonable, regardless of whether there may be other reasonable, or even more reasonable, views. That is particularly true where, as here, the agency is operating at the frontiers of science.

Checks and balances

- Federal Judiciary defers to Federal Executive Branch Agency
- Congress is only potential check and balance of Federal power with regard to the ESA