National Petroleum Council

Arctic Potential

Realizing the Promise of U.S. Arctic Oil and Gas Resources

April 7-9, 2015

National Petroleum Council (NPC)

Origins Continuation of WWII government / industry cooperation

Purpose Sole purpose of NPC is to advise U.S. Secretary of Energy and

Executive Branch by conducting studies at their request

Organization A Federally chartered, self-funded Advisory Committee;

not an advocacy group, does not lobby

Membership Broad and balanced. Approximately 200 members from all

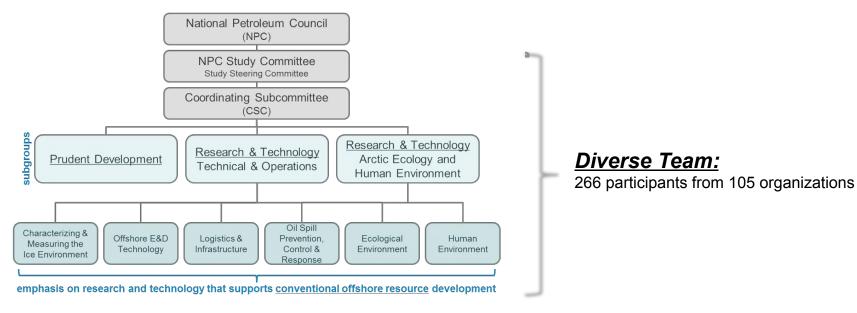
segments of the oil and gas industries and many outside interests

Study Diverse interests and expertise relating to the topic being

Participants addressed

Study Reports All NPC advice is provided in reports approved by its members

and is available to the public. Reports can be viewed and

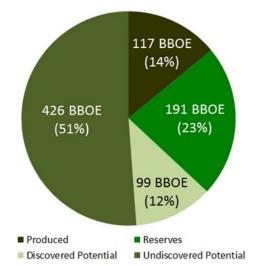

downloaded at no cost from the NPC website – www.npc.org

Study Request and Organization

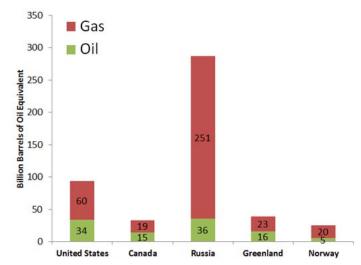
In October 2013, the Secretary of Energy requested the NPC to conduct a study

- "What research should the Department of Energy pursue and what technology constraints
 must be addressed to ensure prudent development of Arctic oil and gas resources while
 advancing U.S. energy and economic security and ensuring environmental stewardship?"
- The Secretary also noted that the Council's perspective would be helpful input to the U.S. chairmanship of the Arctic Council, the Quadrennial Energy Review and implementing the U.S. National Strategy for the Arctic Region

The NPC approved the report on March 27, 2015


Executive Summary - Key Findings

- 1. Arctic Oil and Gas Resources are Large and Can Contribute Significantly to Meeting Future U.S. and Global Energy Needs
- 2. The Arctic Environment Poses Some Different Challenges Relative to Other Oil and Gas Production Areas, But is Generally Well Understood
- 3. The Oil and Gas Industry Has a Long History of Successful Operations in Arctic Conditions Enabled by Continuing Technology and Operational Advances
- 4. Most of the U.S. Arctic Offshore Conventional Oil & Gas Potential Can Be Developed Using Existing Field-Proven Technology
- 5. The Economic Viability of U.S. Arctic Development is Challenged by Operating Conditions and the Need for Updated Regulations that Reflect Arctic Conditions
- Realizing the Promise of Arctic Oil and Gas Requires Securing Public Confidence
- 7. There Have Been Substantial Recent Technology and Regulatory
 Advancements to Reduce the Potential for and Consequences of a Spill


Large Arctic Oil and Gas Potential

Arctic Oil and Gas Resources are Large and Can Contribute Significantly to Meeting Future U.S. and Global Energy Needs

- The global Arctic contains about 25% of remaining undiscovered global conventional resources (USGS), and the U.S. has a large portion of oil potential
- If exploration starts now, offshore Alaskan development could coincide with the expected decline in the lower 48 fields
- National security and economic benefits associated with increased U.S. activity

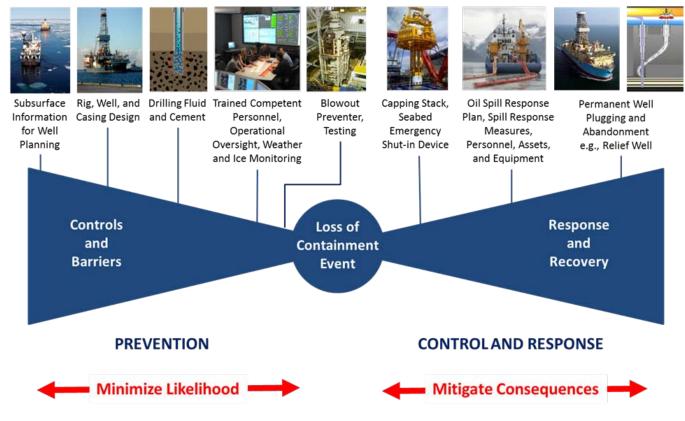
Global Conventional Arctic Endowment

Global Arctic Conventional Oil and Gas¹ Resource Potential by Country

¹ Natural gas liquids not shown

Most U.S. Arctic Offshore is Developable Today

Most of U.S. Arctic Offshore Conventional Oil and Gas Resources Can Be Developed Using Existing Field-Proven Technology


Physical Ice Environment and	Water Depth	Technology to Explore & Develop	
Typically ice free, any water depth - Minor first year ice intrusions, icebergs possible	- South Barents Sea - Newfoundland		
		Exploration & development proven (Various drilling rigs, floating solutions, GBS, subsea tieback) Snøhvit Subsea Hibernia GBS Hibernia GBS	
Any ice conditions, near shore & shallow water - ~<15m water	- Globally, near shore (including US Beaufort and Chukchi Seas)	Exploration & development proven (Ice & gravel islands, concrete & steel structures, extended reach drilling from onshore) Spray Ice Island Northstar	
Open water > ~2 months, any water depth - Mainly first year ice, potential for combination of multi-year ice, icebergs and ice islands - Water depth determines development concept (greater or less than ~100m is key)	- Sea of Okhotsk - Pechora Sea - Labrador Sea - US Chukchi & Beaufort Seas - South Kara Sea	Exploration proven; development proven mainly in ~<100m water Ice management required ~<100m development by GBS ~>100m development by floating drilling & subsea tieback	
Open water <~2 months, any water depth - Likely to encounter multi-year ice and/or icebergs, and in some locations ice islands - Water depth determines development concept, (greater or less than ~100m is key)	Deepwater Beaufort Sea Deepwater Northern Russian Arctic Seas	Exploration & development possible with technology improvements Increased ice management capability and possible new technology	
Limited to no open water - Frequent multi-year ice with embedded icebergs, and ice islands	North East Greenland Deepwater Northern Russian Arctic Seas	Technology extensions or new technology required Floating, robust ice managed solutions GBS / Subsea technology extensions or new technologies Difficult to mobilize equipment without open water season	

ncreasing Complexity to Explore & Develop

Well Control Technology Improvements

There Have Been Substantial Recent Technology and Regulatory Advancements to Reduce the Risk and Consequences of a Spill

- The greatest reduction of environmental risk comes from preventing a spill
- Recently developed control and mitigation technologies should be assessed

Recommendations

Although the technology exists today to explore and develop the majority of U.S. offshore oil and gas potential, additional research opportunities are recommended to:

- Validate recently developed technology for use in the U.S. offshore, or
- Pursue technology extensions that could lead to improved safety, environmental or cost performance

Policy and regulatory recommendations are also included where they enable the application of technology and best practices from other jurisdictions, that could improve safety, environmental or cost performance

32 Recommendations in the Executive Summary

- 13 research, 3 regulatory, 16 leadership/policy
- Additional 60 research recommendations in the report

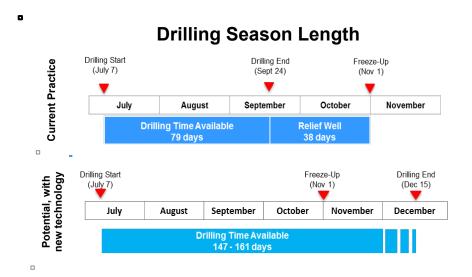
Recommendations grouped into themes: Environmental Stewardship; Economic Viability; Government Leadership and Policy Coordination

Environmental Stewardship

The NPC recommends:

- Industry and regulators should work together to perform the analysis, investigations and any necessary demonstrations to validate technologies for improved well control
- Government agencies should participate in ongoing and future industry collaborative research programs for oil spill response in ice, such as the Arctic Response Technology Joint Industry Programme that has been underway since 2012
- Regulators should continue to evaluate oil spill response technologies in Arctic conditions, and all spill response technologies should be preapproved to enable selection of the appropriate response technology to achieve the greatest reduction in adverse environmental impacts
- Long term population estimates and understanding of the interactions of key species with oil and gas activities should be improved, to improve efficiency of exploration and environmental stewardship
- Collaboration and coordination of ecological and human environment research should be improved

Subsea Isolation Device



Capping Stack

Economic Viability

The NPC recommends:

- Industry, government, regulators should perform the analysis, investigations and necessary demonstrations to validate technologies / capabilities to safely extend the drilling season
- The Department of Energy and the Department of the Interior should assess the timelines to progress an offshore exploration and development program, compared with current U.S. lease durations and practices in other jurisdictions
- Policies, regulations and implementation practice should encourage innovation and enable use of technology advances

Lease Length				
Country	License / Lease System	Typical Well Count to Retain License / Lease	License / Lease Duration	
Canada	Exploration Based	1 - 2	9 years	
Greenland	Exploration Based	1 - 2	Up to 16 years	
Norway	Exploration Based	1 - 2	Up to 30 years	
Russia	Exploration Based	1 - 2	10 years	
USA	Development Based	6 - 7	10 years	
·				

Government Leadership and Policy Coordination

Considering domestic leadership and policy coordination, the NPC recommends:

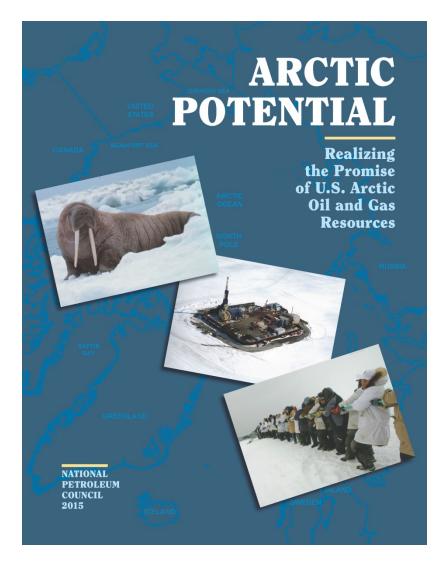
- The Arctic Executive Steering Committee should reaffirm U.S. commitment to prudent Arctic oil
 and gas development, assess alignment across federal agencies, and clarify the process by
 which it will collaborate with Alaskans
- The Arctic Executive Steering Committee as part of its mandated gap analysis should request regulators to compile a comprehensive and integrated inventory of regulatory requirements, and assess the interagency working group for lessons learned and improvement opportunities
- The Department of Energy should designate a senior advisor to support DOE's representative on the Arctic Executive Steering Committee and be a focal point for Arctic policy

Considering the Arctic Council, the NPC recommends:

- As Arctic Council members implement the two international agreements on search and rescue (2011) and on oil pollution preparedness and response (2013), the U.S. government should engage with the energy industry on response exercises
- The U.S. government should strengthen the Arctic Economic Council's interaction and engagement with the Arctic Council

Forward Plans

Digital Publications and Communications


- Approved by the Council March 27, 2015
- Report available for download
 - Video 5 minutes
 - Executive Summary
 - Full Report
 - Topic Papers
 - Council Webcast

Printed Report Publication

- Executive Summary volume available mid April
- Full report available end May
- eBook available early June

www.npc.org

